序列相关性分析——总结

文章来自微信公众号“科文路”,欢迎关注、互动。转发须注明出处。

该文章属于“时间序列分析”系列文章,是之前在校阶段的学习总结。为避免翻译歧义,采用英文写作。当前主题分为三个部分,自协方差、自相关函数、偏自相关函数。

前面文章说了自协方差自相关函数(ACF)偏自相关函数(PACF),这篇文章做一个简单总结。另外引出了 ARMA 这个模型,作为时间序列分析模型的概念引出,它算是 ACF 和 PACF 的一个应用​。在后面的文章中会继续介绍这个模型。

In time series analysis, we should always focus on the correlation itself. Because there exists no other series to compare, we define autocovariance, autocorrelation function and partial autocorrelation function based on the characteristics of the time series.

Word auto means we do the analysis on itself.

Summary

  • Autocovariance = Covariance

  • Autocorrelation = Pearson correaltion coefficient calculated with the expectation of the whole process

  • Partial Autocorrelation = Pearson correaltion coefficient calculated with the expectations respectively

ARMA

MathWorks

Process ACF PACF
AR($p$) Tails off gradually Cuts off after $p$ lags
MA($q$) Cuts off after $q$ lags Tails off gradually
ARMA($p, q$) Tails off gradually Tails off gradually

序列相关性分析——总结

https://xlindo.com/kewenlu2022/posts/b26a275a/

Author

xlindo

Posted on

2022-02-11

Updated on

2023-05-10

Licensed under

Comments